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Spinning Particles in Spacetimes with Torsion
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A novel analysis of the Mathisson-Papapetrou-Dixon equations is presented employing
mathematical tools that do not rely on the torsion free geometries used in previous
literature. A system of differential algebraic equations that can be used to describe
the motion of spinning particles in an arbitrary geometry is derived. The curvature in
these equations can involve non-Riemannian contributions. Subsequently, this particular
system of equations can accommodate modification to geodesic motion from both scalar
fields and the spin of the particle.
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1. INTRODUCTION

Extended bodies or elementary particles with angular momentum in a back-
ground curved spacetime are expected to experience forces and torques. This
behaviour can be relevant to many astrophysical phenomena that have been al-
ready observed. It is widely suspected that exotic celestial processes such as the
gamma-ray bursts, astrophysical jets or X-ray emitters might be the product of
the dynamics of electrically charged relativistic matter with angular momentum in
the presence of strong electromagnetic and gravitational fields. As a consequence
massive test particles with intrinsic spin, moving in strong gravitational fields, are
not expected to follow time-like geodesic worldlines (Mohseni et al., 2001).

In principle, one can adopt some basic mechanism for the coupling of
charge and angular momentum distributions to such fields and attempt to model
the above systems using the relativistic Einstein-Maxwell-Boltzmann equations
(Ehlers, 1971). However, it was soon realised that solving those equations for even
simple matter models is often impossible and approximation schemes needed to
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be employed. Mathisson, Fock, Papapetrou et al. (Mathisson, 1937; Papapetrou,
1951) were the first to study in detail the dynamics of such particles by neglecting
self-gravitation and back reaction. Some years later, Dixon used a rationalised
multipole expansion technique to further elucidate the previous work (Dixon,
1964, 1965, 1970a,b, 1973, 1974). More specifically, he suggested that a finite
collection of mass and charge multipoles in an arbitrary background spacetime
could determine the worldline for continuous matter. Although the resulting equa-
tions of motion offer a consistent dynamical scheme for the classical behaviour of
“spinning matter” they are difficult to solve analytically, even for simple gravita-
tional fields and in the lowest pole-dipole approximation (Tod and Felice, 1976).
Up to the dipole approximation the equations of motion of spinning particles are
known as the Mathisson-Papapetrou-Dixon (MPD) equations and they encode a
spin-curvature coupling that may play an important role in astrophysical systems.

Nevertheless, gravitational theories with spinning matter reside rather unnat-
urally in the pseudo-Riemannian (i.e. torsion free) spacetime in which the whole
Dixon framework was formulated. Furthermore, as we have experienced in the
case of the Brans-Dicke theory (Brans and Dicke, 1961), it is not necessary to have
spinning sources to accommodate gravitational fields with torsion. As a result, one
should consider seriously the possibility that gravitation may have a torsional com-
ponent that is in principle absent in the pseudo-Riemannian spacetimes adopted
in Einstein’s theory (Tucker, 2004). The structure of this work involves analysing
the motion of spinning test particles in background geometries more general than
General Relativity.

In the monopole-dipole approximation the history of a particle with non-zero
mass (m �= 0) can be described by a time-like parametrised curve with parameter
τ and tangent vector V (τ ). The particle’s curve is assumed to be initially future
pointing and the dynamics of the spinning particle is also determined by a second
time-like vector P (τ ) and a space-like vector �(τ ) associated with the momentum
and the spin respectively. Suppose we have a 4-dim manifold with a metric g =
ηabe

a ⊗ eb, where ηab = diag(−1,+1,+1,+1), and {ea} form a g-orthonormal
frame. It is more convenient to relate the elements of the tangent space at each point
of the worldline of the particle to elements in the dual space. Therefore, for any
vector V in the tangent space we can define its metric dual as v = ˜V = g(V,−).
In a similar way, for any covector v in the associated cotangent space we can write
V = ṽ = G(v,−), where G is the inverse of g.

According to Dixon’s formulation, the “intrinsic” spin covector, l ≡ − 1
2 �

(u ∧ s), can be considered as a distributional approximation to the collective
history of matter about the worldline defined by P ≡ mc2U = mc2ũ and � ≡
˜l
m

≡ σ̃ in any background metric (Hodge map, �, is defined by the volume element
� = e0 ∧ e1 ∧ ∧e2 ∧ e3 and we can write �1 = �), where m is the mass scalar, u

the velocity 1-form normalised with g(̃u, ũ) = −1 and σ the radius spin 1-form.
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Then, the MPD equations for a tangent vector V (τ ), momentum vector P (τ ) and
spin 2-forms s(τ ) given a metric g are,

Ṗ = ˜iV f , (1)

ṡ = 2˜P ∧ ˜V , (2)

and

iP s = 0, (3)

where f = − 1
4 � (Rab ∧ �s)ea ∧ eb is the tidal bivector along the worldline in any

local cobasis {ea} and Rab are the curvature 2-forms of ∇ in this cobasis. Also
note that for any tensor Q(τ ) along the worldline we write Q̇ ≡ ∇V Q in terms of
a general connection restricted to this curve and iV denotes interior contraction
with V (Mohseni et al., 2001).

In component notation we can write Rab = 1
2Rabpqe

p ∧ eq and s = scde
c ∧

ed . So,

Rab ∧ �s = scd

2
Rabpq [ep ∧ eq ∧ �(ec ∧ ed )] = scdR

cd
ab � 1, (4)

or

�−1(Rab ∧ �s) = Rabcds
cd . (5)

Then Eq. (1) becomes,

ṗb = 1

2
Rbacds

cdva. (6)

Similarly, Eq. (2) becomes,

ṡml = pmvl − plvm. (7)

Finally, recall that for any vector field X and any form � we can write

iX � � = �(� ∧ ˜X). (8)

Also for a p-form α, �−1α = −(−1)p(n−p) � α, where n is the dimension of the
manifold. If we apply these on the r.h.s of (3) we get

p ∧ �s = 0. (9)

2. ANALYSIS OF THE MPD EQUATIONS FOR SPINNING PARTICLES

As we have seen we can define the spin 1-form to be

l = −1

2
� (u ∧ s), (10)
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so ip̃s = 0. Then we can write

l = −1

2
iũ � s ⇒ iũl = 0. (11)

For generality, we introduce the drive 1-form K and 2-form D and consider the
equations of motion in a background metric g = ηabe

a ⊗ eb. In this case the MPD
equations are

ṗ = ĩvf + K, (12)

with f = − 1
4 � (Rab ∧ �s)ea ∧ eb,

ṡ = 2p ∧ v + D, (13)

and

ip̃s ≡ p ∧ �s = 0. (14)

Now set p = m′u for a scalar m′ ≡ cm so from the last equation we can write
ip̃s = im′ũs = 0 ⇒ iũs = 0. It is also convenient to adopt a parameterisation for
the worldline with a tangent vector v such that g(̃u, ṽ) = −1 for g(̃u, ũ) = −1 and
we can write

iũv = −1. (15)

Since g is metric compatible, then

g(u̇, u) = 0 ⇒ iũu̇ = 0. (16)

From (10) we can write

2 � l ≡ 2 �−1 l = −u ∧ s, (17)

and if we apply iũ on both sides of the above equation we get,

s = 2iũ � l = 2 � (l ∧ u). (18)

It is not difficult to see that,

�s = −l ∧ u (19)

Also, from (12) we have

ṗ ≡ ṁ′u + m′u̇ = ĩvf + K. (20)

If we apply iũ on both sides of (20) we have,

−ṁ′ = iũĩvf + iũK. (21)

But ĩvf = − 1
2 � (Rab ∧ �s)vaeb and iũĩvf = − 1

2 � (Rab ∧ �s)vaub. So, in general
we can write

ṁ′ = 1

2
� (Rab ∧ �s)vaub − iũK. (22)
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Now set l = m′σ , so f = m′
2 � (Rab ∧ σ ∧ u)ea ∧ eb,K = m′k andD = m′d.

Then, from (20) we have

m′u̇ = ĩvf + m′k − ṁ′u, (23)

or

u̇ = �(Rab ∧ σ ∧ u)vaeb + k + �(Rab ∧ σ ∧ u)vaubu + uiũk

= (1 + uiũ)[k + �(Rab ∧ σ ∧ u)vaeb]. (24)

Now, (13) can be written as

ṡ = 2p ∧ v + m′d = 2m′u ∧ v + m′d (25)

and

�ṡ = 2m′ � (u ∧ v) + m′ � d . (26)

But �s = −2m′σ ∧ u. Therefore,

−2(m′σ ∧ u)· = 2m′ � (u ∧ v) + m′ � d , (27)

or if we expand the l.h.s,

ṁ′σ ∧ u + m′σ̇ ∧ u + m′σ ∧ u̇ = −m′ � (u ∧ v) − 1

2
m′ � d . (28)

We next apply iũ to (28), using that iũu̇ = 0 and iũσ = 0. The result is

ṁ′σ + m′(iũσ̇ ∧ u + σ̇ ) = −1

2
m′iũ(�d ). (29)

This equation defines the transformation law for σ . Now multiply both sides by
u∧, so

u ∧ (ṁ′σ ) + u ∧ (m′σ̇ ) = −1

2
m′u ∧ iũ(�d ). (30)

But we can use (30) to substitute for ṁ′σ ∧ u + m′σ̇ ∧ u in (28) and get

σ ∧ u̇ + �(u ∧ v) + 1

2
(1 + uiũ) � d = 0. (31)

Next, we multiply by the Hodge map � and note that for any r−form in the 4-dim
spacetime � � α = −(−1)r(4−r)α. Hence,

− � σ ∧ u̇ + u ∧ v − 1

2
� (1 + uiũ) � d = 0. (32)

Note that this equation involves v in the u ∧ v term as well as in the σ ∧ u̇ term
since (24) involves v. Now introduce ̂d = 1

2 � (1 + uiũ) � d so,

�(σ ∧ u̇) − u ∧ v + ̂d = 0. (33)
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Applying iũ would simply give,

v = u − iũ[�(σ ∧ u̇)] − iũ̂d. (34)

Since the last term is independent of v we write 	 ≡ iũ̂d. Then,

v − u = �(σ ∧ u̇ ∧ u) − 	. (35)

Now write k̂ = (1 + uiũ)k so Eq. (26) becomes,

u̇ = k̂ + (1 + uiũ)eb � (Rab ∧ σ ∧ u)va. (36)

Until now we have expressed v in terms of u, σ and k̂ . Next, we look at the term
�(σ ∧ u̇ ∧ u) in (35). Using (36) we can write,

u̇ ∧ u = k̂ ∧ u + �(Rab ∧ σ ∧ u)vaeb ∧ u, (37)

since u ∧ u is zero. Therefore,

σ ∧ u̇ ∧ u = σ ∧ k̂ ∧ u + �(Rab ∧ σ ∧ u)va(σ ∧ eb ∧ u) (38)

and

�(σ ∧ u̇ ∧ u) = � + va � (Rab ∧ σ ∧ u) � (σ ∧ eb ∧ u), (39)

where we set � ≡ �(σ ∧ k̂ ∧ u), independent of v. If we substitute (39) in (35)
we get,

v − u = � − 	 + va � (Rab ∧ σ ∧ u) � (σ ∧ eb ∧ u). (40)

So, we only need to solve this last equation for vc. We apply iσ̃ to (40), using that
iũσ = iσ̃ u = 0 and iσ̃ � (σ ∧ eb ∧ u) = �(σ ∧ eb ∧ u ∧ σ ) = 0. Hence,

iσ̃ v = iσ̃ (� − 	). (41)

But iσ̃� = iσ̃ � (σ ∧ k ∧ u) = −(σ ∧ k̂ ∧ u) = 0,

iσ̃ v = −iσ̃	 ≡ −iσ̃ iû̂d. (42)

Note that if we apply iũ in (40) and using that iũu = −1, iũv = −1 we get
iũ � (σ ∧ eb ∧ u) = 0, iũ	 = 0, iũ� = 0, so finally 0 = 0 and nothing new can
be provided. So set

β = � − 	, (43)

where � ≡ −iσ̃ iũ � k̂ and 	 ≡ iũ̂d. Now put Rab = 1
2ε

pq

ab
̂Rpq , so ̂Rcd = 1

2εab
cd Rab

and also recall that Rab = −Rba . If we substitute all the above in (40) we get

v = u + β − 1

2
vaε

pq

ab � (̂Rpq ∧ σ ∧ u) � (σ ∧ u ∧ eb)

= u + β − 1

2
vaε

pq

ab iũiσ̃
̂
̂Rpq � (σ ∧ u ∧ eb), (44)
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where ̂
̂Rpq = �̂Rpq . Then, apply ic to both sides and let the scalar �pq =

iũiσ̃
̂
̂Rpq = −�qp. After some algebra we get,

vc − uc − βc = −1

4
va�pqiũiσ̃ (er ∧ es)εpq

ab εbc
rs , (45)

where ε is the Levi-Civita antisymmetric symbol. In turn, the product ε
pq

ab εbc
rs can

be expressed in terms of the Kronecker symbol δa
b

vc − uc − βc = −1

4
va�rqiũiσ̃ (er ∧ es)

(

2δc
aδ

r
pδs

q − 2δr
aδ

c
pδs

q + 2δs
aδ

c
pδr

q

)

(46)

and if we expand we get

vc − uc − βc = 1

2
vc�rsiσ̃ iũ � (er ∧ es) − 1

2
vr�csiσ̃ iũ � (v ∧ es)

+1

2
vs�cr iσ̃ iũ � (er ∧ v). (47)

Now set � ≡ 1
2�rs(er ∧ es) = 1

2 (iσ̃ iũ
̂
̂Rrs)(er ∧ es), where � is a 2-form and note

that �criσ̃ iũ(er ∧ v) = −�criσ̃ iũ(v ∧ er ). If we use these in (47) we get

vc − uc − βc = vciσ̃ iũ� − �csiσ̃ iũ(v ∧ es). (48)

It is not difficult to show that

iσ̃ iũ(v ∧ es) = −usiσ̃ v − σs, (49)

where we made use of the fact that iũv = −1. But from (42) we have iσ v = iσ iv̂d

and from (43) β = � − 	 = −iσ̃ iũ � k̂ − iũ̂d. By its definition � can be expressed
as

� ≡ �(Rab ∧ σ ∧ 	) � (ea ∧ eb). (50)

Since ̂f = m
2 � (Rab ∧ σ ∧ u)(ea ∧ eb) the last equation simply becomes � =

2
m

� ̂f . Back in (48) we can write

vc − uc − βc = vc(iσ̃ iũ�) + �csus(−iσ̃ iũ̂d) + �csσs. (51)

So,

(1 − iσ̃ iũ�)vc = uc + βc + �csσs − �csusiσ̃ iũ̂d (52)

or

(1 − iσ̃ iũ�)vc = uc + iciσ̃ iũ � k̂ − iciũ̂d + �csiσ σ + �csisu(iσ̃ iũ̂d). (53)

Now remember that iσ̃ iũ� = iũiσ̃
̂
̂Rrsu

rσ s where � ≡ 1
2�rser ∧ es . Therefore,

�csσses = (iũiσ̃̂
̂Rrs)σsec (54)
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and

iσ̃� = �rsσrer = −�srσres (55)

⇒ �csσsec ≡ −iσ̃�. (56)

Similarly, we can show that

�csusec ≡ −iũ�. (57)

Now let β = βcec = iũ̂d − iσ̃ iũk̂. So back in (53) we can write,

v = u − iσ�

(1 + iũiσ̃�)
+ (iσ̃ iũ̂d)iũ� − iũ̂d − iσ̃ iũ � k̂

(1 + iũiσ̃�)
, (58)

where � = 1
2 (iũiσ̃̂

̂Rrs)er ∧ es , ̂
̂Rpq = �̂Rpq , ̂Rpq = 1

2εab
pqRab, ̂d = 1

2 � (1 + u ∧
iũ) � d,̂k = (1 + uiũ)k, k = K/m′ and d = D/m′. Note that Eq. (58) gives explic-
itly the velocity of a test spinning particle, v in terms of u, σ , d and k, provided a
spacetime Rab. We argue that the differential algebraic system of Eqs. (12), (14),
(29) and (58) is adequate to define the motion of a spinning particle in a given
arbitrary background metric.

3. CONSTANTS OF MOTION

As we have already seen in the previous section

ṡ = 2p ∧ v + m′d = 2m′u ∧ v + m′d . (59)

Since p ∧ �s = 0, we can write

s ∧ �ṡ = 2s ∧ �(p ∧ v) + m′s ∧ �d = 2(p ∧ v) ∧ �s + m′s ∧ �d = m′s ∧ �d ,

(60)
and

(s ∧ �s)· = 2s ∧ �ṡ = 2m′s ∧ �d . (61)

Now define the 0-form λ as

λ = 1

2
G(l, l), (62)

then

λ̇ = G(l̇, l) = ĩl l̇ ≡ m
′2iσ̃ σ̇ , (63)

where l = m′σ . Also recall that s = 2 � (l ∧ u) and the transformation law for σ

is given by (29). We next apply iσ̃ on both sides of Eq. (29) and write,

iσ̃ (ṁ′σ ) + iσ̃ [m′(iũσ̇ ∧ u + σ̇ )] = −1

2
iσ̃ iũ(m′ � d ). (64)
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Since iσ̃ σ = 0 and iσ̃ ṁ′ = 0 the first term vanishes and we simply get

iσ̃ (iũσ̇ ) ∧ u − iũσ̇ ∧ (iσ̃ u) + iσ̃ σ̇ = −1

2
iσ̃ iũ(�d ). (65)

Remember that iũσ = iσ̃ u = 0, so the second term becomes zero. Equation (65)
can be subsequently written as

iσ̃ (iũσ̇ ) ∧ u + iσ̃ σ̇ = −1

2
iσ̃ iũ(�d ). (66)

If we now use the fact that iσ̃ iũ = −iũiσ̃ we can write

iσ̃ σ̇ = −1

2

iσ̃ iũ(�d )

1 − uiũ
. (67)

If we substitute (67) in (63) we get

λ̇ = m
′2iσ̃ σ̇ = −m

′2

2

iσ̃ iũ(�d )

1 − uiũ
. (68)

Therefore, ‖l‖ = 2λ is a constant of motion iff iσ̃ iũ(�d ) = 0.
Next, we compute the scalar m′ defined by p = m′u and g(u, u) = −1. As

before, we can write

−m
′2 = G(p, p) ≡ ip̃p. (69)

We know that

ṡ = 2p ∧ v + D. (70)

If we apply ip̃ we then have

ip̃ ṡ = 2ip̃(p ∧ v) + ip̃D
= 2ip̃p ∧ v − 2p ∧ ip̃v + ip̃D

= −2m
′2v − 2p ∧ ip̃v + ip̃D, (71)

where we have made use of (69). If ip̃v �= 0, then we can write

p = − 1

2ip̃v
(ip̃ ṡ + m

′2v − ip̃D). (72)

Also, from (69) we have

−(m
′2)· = 2G(ṗ, p) = 2ip̃ṗ = 2i

˜ṗp. (73)

If we now substitute (72) in (73) we get

−(m
′2)· = 1

ip̃v
(i

˜ṗip̃D − m
′2ivK − i

˜ṗip̃ ṡ), (74)



Spinning Particles in Spacetimes with Torsion 571

where we have made use of ṗ = ĩvf + K. Now since ip̃s = 0, i.e s(P,−) = 0,
by differentiating we get

ṡ(P,−) + s(Ṗ ,−) = 0, (75)

or

ip̃ ṡ = −i
˜ṗs. (76)

Therefore, i ˙̃pip̃ṡ = 0 and (74) becomes,

(m
′2)· = 1

ip̃v
(m

′2ivK − i
˜ṗip̃D). (77)

Then, if ip̃v �= 0, m
′2 is a constant of motion if the numerator of (77) is zero.

4. BRANS-DICKE THEORY

As an application we consider the simplest modification of General Relativity.
In 1961 Brans and Dicke suggested a change in Einstein’s theory by introducing
an additional scalar field with a specific gravitational coupling to matter via the
space-time metric (Brans and Dicke, 1961; Dicke, 1962). They postulated that
this scalar field determines the value of the locally varying gravitational coupling
constant and that φ ∼ G−1. They also argued that classical tests of gravitational
theories might have failed to detect experimentally this new scalar component.
The dispute is still open and there are recent proposals about new detectable
implications (Dereli and Tucker, 2001).

In their original paper (Brans and Dicke, 1961) they assumed that the motion
of a test particle follows a Levi-Civita auto-parallel associated with the metric
derived from the Brans-Dicke field equations. This assumption could also stand
when the scalar field varies in spacetime. In a later work Dirac demonstrated that,
in a Weyl invariant generalisation, it is more natural to generate the motion of a
test particle from a Weyl invariant action principle (Dirac, 1973). In general, such
a motion is different from the Brans-Dicke, Levi-Civita auto-parallel and it turns
out that even neutral test particles would follow auto-parallels of a connection
with torsion (Dereli and Tucker, 2001). It has been shown that the Brans-Dicke
theory can be reformulated as a field theory on a spacetime with dynamic torsion
T determined by the gradient of the Brans-Dicke scalar field:

T = ea ⊗ dφ

2φ
⊗ Xa − dφ

2φ
⊗ ea ⊗ Xa, (78)

where ea is any coframe and Xa its dual (Dereli and Tucker, 1982). In differential
forms notation the above equation can be expressed as

T a = ea ∧ dφ

2φ
(79)
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Now recall that the general connection is defined as (Benn and Tucker, 1987)

∇Xa
Xb ≡ ωc

b(Xa)Xc, (80)

where ωc
b are the connection 1-form and {ea} the co-frame dual to {Xa}. The

connection 1-forms can be decomposed into its Riemannian and non-Riemannian
part 0ωa

b and Ka
b respectively,

ωa
b = 0ωa

b + Ka
b, (81)

where 0ωa
b are the Levi-Civita connection 1-forms. It can be shown that (Tucker

and Wang, 1995)

20ωa
b = (gacib − gbcia + eciaib)dec + (ibdgac − iadgbc)ec + dgab (82)

and

2Ka
b = iaTb − ibTa − iaibTce

c. (83)

In turn, the curvature 2-forms are given by

Ra
b = dωa

b + ωa
c ∧ ωc

b (84)

and can be decomposed as

Ra
b = 0Ra

b + 0DKa
b + Ka

c ∧ Kc
b, (85)

where

0DKa
b = dKa

b +0 ωa
c ∧ Kc

b + Ka
c ∧0 ωc

b, (86)

and 0Ra
b is the Riemannian part of the curvature 2-forms (Dereli and Tucker,

1982).
Let us consider now the differential algebraic system of Eqs. (12), (14), (29)

and (58) in a background metric g and a scalar field φ. The problem is further
simplified when the drive 1-form K and 2-form D are set equal to zero (dipole
approximation). In this case the equations under consideration become,

∇(g,T )
V P = ˜iV f , (87)

iP s = 0, (88)

(1 + u ∧ iU )∇(g,T )
V σ = 0 (89)

and

v = u − i��

1 + iU i��
, (90)

where f = − 1
4 � (Rab ∧ s)ea ∧ eb and � = 1

2 [iũiσ̃ � ( 1
2εab

pqRab)]er ∧ es . Also, the
action of the connection ∇(g,T ) is defined by (80). We must stress that the curvature
in the above equations can involve non-Riemannian contributions. In this way
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modifications to geodesics due to both scalar fields and particle’s spin can be
included.

For the Brans-Dicke theory the 1-forms Kab = −Kba can be expressed in
terms of the scalar field φ and it has been shown that (Dereli and Tucker, 1982)

Ka
b = 1

2φ
(eaibdφ − ebi

adφ). (91)

If we use Eqs. (86) and (91) in (85), after some algebra one can show that

Rab = 0Rab − dφ

2φ2
∧ [ib(dφ)ea − ia(dφ)eb] + 1

2φ
d[ib(dφ)ea − ia(dφ)eb]

+ 1

2φ
[ib(dφ)0ωac ∧ ec − ic(dφ)0ωac ∧ eb] + 1

2φ
[ic(dφ)ea ∧0 ωc

b

−ia(dφ)ec ∧0 ωc
b] + 1

4φ4
[ic(dφ)ib(dφ)ea ∧ ec − ic(dφ)ic(dφ)ea ∧ eb

+ia(dφ)ic(dφ)ec ∧ eb]. (92)

It is well known that any theory written in terms of a geometry with non-
trivial (g, T ) and φ can be reformulated in terms of a geometry with either (g, 0)
or (φg, 0) (Dereli and Tucker, 2001). Moreover it is also true that

∇(g,T ) = ∇(g̃,0) − dφ

2φ
, (93)

where g̃ = φg with the above choice of T and both connections metric compatible.
An interesting reformulation of the Brans-Dicke theory occurs by applying a
transformation

ẽa =
(

φ

φ0

) 1
2

ea (94)

for the orthonormal frames, where φ0 is a constant. The new coframe fields ẽa

become orthonormal with respect to the spacetime metric g̃ such that

g̃ =
(

φ

φ0

)

g. (95)

In this case the MPD equations become

∇(g̃,0)
V P = ˜iV f , (96)

iP s = 0, (97)

(1 + u ∧ iU )∇(g̃,0)
V σ = 0 (98)
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and

v = u − i��

1 + iU i��
, (99)

where now f = − 1
4 � (0R′

ab ∧ s)ea ∧ eb and � = 1
2 [iũiσ̃ � ( 1

2εab
pq(0R′

ab))]er ∧ es .
Note that 0R′

ab are curvature 2-forms associated with the new metric g̃.

5. CONCLUSIONS

To sum up, we argue that the differential algebraic system of Eqs. (12), (14),
(29) and (58) is adequate to define the motion of a spinning particle in a given
arbitrary background metric. The problem is further simplified in the case of dipole
approximation, when the drive 1-formK and 2-formD are set equal to zero . Then,
the equations under consideration become,

Ṗ = ˜iV f , (100)

iP s = 0, (101)

(1 + u ∧ iU )σ̇ = 0 (102)

and

v = u − i��

1 + iU i��
, (103)

with f = − 1
4 � (Rab ∧ s)ea ∧ eb and � = 1

2 [iũiσ̃ � ( 1
2εab

pqRab)]er ∧ es . We must
stress that the curvature in the above equations can involve non-Riemannian con-
tributions. Hence, the MPD equations can be analysed in background metrics
more general than the ones considered by the theory of General Relativity. In this
way modifications to geodesics due to both scalar fields and particle’s spin can be
included.

Finally, we should point out that Eq. (77) in the dipole approximation gives
(m′2)· = 0. Therefore, we recover the familiar result that the mass of the spin-
ning particle is preserved along the particle’s worldline. However, the notion of
particle’s mass is not trivial in these equations and it is only a constant of the
motion if certain properties of the multiples are zero. This outcome questions the
equivalence principle on which Einstein’s theory is founded.
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